The Accelerating Complexity of AI Models

“The number of parameters in a neural network model is actually increasing on the order of 10x year on year. This is an exponential that I’ve never seen before and it’s something that is incredibly fast and outpaces basically every technology transition I’ve ever seen… So 10x year on year means if we’re at 10 billion parameters today, we’ll be at 100 billion tomorrow,” he said. “Ten billion today maxes out what we can do on hardware. What does that mean?”–Naveen Rao, Intel

About GilPress

I launched the Big Data conversation; writing, research, marketing services; https://whatsthebigdata.com/ & http://infostory.com/
This entry was posted in AI, AI history, deep learning and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s